EE 330 Lecture 33

- High Gain Amplifiers
- Current Source Biasing
- Current Sources and Mirrors

Exam Schedule

Exam 2 will be given on Friday March 11 Exam 3 will be given on Friday April 15

As a courtesy to fellow classmates, TAs, and the instructor

Wearing of masks during lectures and in the laboratories for this course would be appreciated irrespective of vaccination status

Review From Previous Lecture

Basic Amplifier Application Gain Table

Can use these equations only when small signal circuit is EXACTLY like that shown !!

Review From Previous Lecture Basic Amplifier Characteristics Summary

Review From Previous Lecture

Cascaded Amplifier Analysis and Operation

• Systematic Methods of Analysis/Design will be Developed

One or more couplings of nonadjacent stages

Less Common

Analysis Generally Much More Involved, Use Basic Circuit Analysis Methods

Cascaded Amplifier Analysis and Operation

Adjacent Stage Coupling Only

• Systematic Methods of Analysis/Design will be Developed

Case 1: All stages Unilateral

Case 2: One or more stages are not unilateral

Review From Previous Lecture Formalization of cascade circuit analysis working from load to input: (when stages are unilateral or not unilateral)

R_{ink} includes effects of all loading Must recalculate if any change in loading Analysis systematic and rather simple

$$\frac{\boldsymbol{v}_{\text{OUT}}}{\boldsymbol{v}_{\text{IN}}} = \frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{1}} \frac{\boldsymbol{v}_{2}}{\boldsymbol{v}_{1}} \frac{\boldsymbol{v}_{3}}{\boldsymbol{v}_{2}} \frac{\boldsymbol{v}_{\text{OUT}}}{\boldsymbol{v}_{3}}$$

This was the approach used in analyzing the previous cascaded amplifier

Review: Small-signal equivalent of a one-port

Review: Small-signal equivalent of a one-port

"Diode-connected transistor"

"GS or BE - connected transistor"

Example 2: $A_v = \frac{v_{out}}{v_{in}} = ?$

Express in terms of small-signal parameters

Example 2: $A_v = \frac{v_{out}}{v_{in}} = ?$

Express in terms of small-signal parameters

Example 3:

Example 3:

Example 4:

$$A_{v} = \frac{v_{out}}{v_{2}} \frac{v_{2}}{v_{1}} \frac{v_{1}}{v_{in}} \cong \left[-g_{m4} \left(R_{D} / / R_{L}\right)\right] \left[1\right] \left[\frac{-g_{m1}}{g_{m2} + \left(\beta_{3} \left(R_{B1} / / R_{B2}\right)\right)^{-1}}\right]$$

Example 5:

High-gain BJT amplifier

$$A_V = \frac{-g_m}{g_0 + G_C} \cong -g_m R_C$$

To make the gain large, it appears that all one needs to do is make R_C large !

$$A_V \cong -g_m R_C = \frac{-I_{CQ} R_C}{V_t}$$

But V_t is fixed at approx 25mV and for good signal swing, $I_{CQ}R_C < (V_{DD} - V_{EE})/2$

$$|A_V| < \frac{V_{DD} - V_{EE}}{2V_t}$$

$$|A_V| < \frac{5V}{2 \cdot 25mV} = 100$$

- Gain is practically limited with this supply voltage to around 100
- And in extreme case, limited to 200 with this supply voltage with very small signal swing

High-gain MOS amplifier

To make the gain large, it appears that all one needs to do is make R_D large !

$$A_V \cong -g_m R_D = \frac{-2I_{DQ}R_D}{V_{EB}}$$

But V_{EB} is practically limited to around 100mV and for good signal swing, $I_{DQ}R_D < (V_{DD}V_{SS})/2$

$$\left|\mathsf{A}_{V}\right| < \frac{\mathsf{V}_{DD} - \mathsf{V}_{SS}}{\mathsf{V}_{EB}}$$

If V_{DD} -V_{SS}=5V and V_{EB}=100mV,

$$|A_V| < \frac{5V}{100mV} = 50$$

Gain is practically limited with this supply voltage to around 50

Are these fundamental limits on the gain of the BJT and MOS Amplifiers?

High-gain amplifier

Need better model of BJT and MOS device (but we already have it) !

High-gain amplifier

I his gain is very large (but realistic) !

And no design parameters affect the gain

But how can we make a current source?

High-gain amplifier

Same gain with both npn and pnp transistors

How can we build the ideal current source?

What is the small-signal model of an actual current source?

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor !

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But for the npn high-gain amplifier considered need a sourcing current

But how good is this current "sink"?

Since I_X is independent of V_{DCS} , acts as an ideal current source (with this model) Termed a "sourcing" current source since pushed into the load If V_{YY} is available, each dc current source requires only one additional

transistor !

Have several methods for generating V_{YY} from V_{DD} (see HW problems)

But how good is this current "source"?

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sinking" current source since current is pulled out of the load

If V_{XX} is available, each dc current source requires only one additional transistor !

Have several methods for generating V_{XX} from V_{DD} (see HW problems) But for the npn high-gain amplifier considered need a sourcing current

But how good is this current "sink"?

Since I_X is independent of V_{CCS} , acts as an ideal current source (with this model)

Termed a "sourcing" current source since pushed into the load

If V_{XX} is available, each dc current source requires only one additional transistor !

Current highly sensitive to V_{XX} if generated with dc voltage source

Have several methods for generating V_{XX} from V_{DD} (see HW problems)

But how good is this current "source"?

Before addressing the issue of how a current source is designed, will consider another circuit that uses current source biasing

The Basic Differential Amplifier

If A_V is large

Operational Amplifier (Op Amp)

Example: Determine the voltage gain of the following circuit

Since symmetric when $v_{\scriptscriptstyle \rm IN}$ =0

$$I_{C1} = I_{C2} = \frac{I_{EE}}{2}$$
$$g_{m1} = g_{m2} = \frac{I_{EE}}{2V_{t}}$$

Example: Determine the voltage gain of the following circuit

$$\begin{aligned}
 \mathcal{V}_{E}(g_{\pi 1} + g_{\pi 1}) &= g_{\pi 1} \mathcal{V}_{IN} + g_{m1}(\mathcal{V}_{IN} - \mathcal{V}_{E}) + g_{m2}(-\mathcal{V}_{E}) \\
 \mathcal{V}_{OUT} &= -R_{C1} g_{m1}(\mathcal{V}_{IN} - \mathcal{V}_{E}) \\
 \mathcal{V}_{E}(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2}) = \mathcal{V}_{IN}(g_{m1} + g_{\pi 1}) \\
 \mathcal{V}_{E} &= \frac{(g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \mathcal{V}_{IN} \\
 \mathcal{V}_{OUT} &= -R_{C1} g_{m1} \mathcal{V}_{IN} \left[1 - \frac{(g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right] \\
 \mathcal{V}_{OUT} &= -R_{C1} g_{m1} \mathcal{V}_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]
 \end{aligned}$$

Example: Determine the voltage gain of the following circuit

$$\boldsymbol{v}_{OUT} = -R_{C1}g_{m1}\boldsymbol{v}_{IN} \left[\frac{g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2} - (g_{m1} + g_{\pi 1})}{(g_{\pi 1} + g_{\pi 2} + g_{m1} + g_{m2})} \right]$$
$$\boldsymbol{v}_{OUT} \cong -R_{C1}g_{m1}\boldsymbol{v}_{IN} \left[\frac{g_{m2}}{(g_{m1} + g_{m2})} \right]$$
$$\boldsymbol{v}_{OUT} \cong \left[\frac{-R_{C1}g_{m1}}{2} \right] \boldsymbol{v}_{IN}$$
$$\boldsymbol{v}_{OUT2} \cong \left[\frac{-R_{C1}g_{m1}}{2} \right] \boldsymbol{v}_{IN}$$

- Very useful circuit
- This is a basic Op Amp
- Uses a current source and V_{DD} for biasing (no biasing resistors or caps!)
- But needs a dc current source !!!!

Simple Current Sources

But how good are these current sources?

Model of dc Current Source

"Reasonable dc Current Source"

Small-signal model of dc current source (since one-port)

 I_{XX} independent of V_1 and t , $\ R_S$ large

want R_{IN} large

 I_{XX} independent of V_1 and t

R_{IN}=∞

Will show circuit in red behaves as a current source

R and Q₀ simply generate voltage V_{XX} in previous circuit But sensitivity of I₁ is much smaller than using voltage source for generating V_{XX}

If the base currents are neglected

$$I_0 \cong \frac{(V_{CC}-0.6V)}{R}$$

If the base currents are neglected

$$I_{0} = J_{S}A_{E0}e^{\frac{V_{BE0}}{V_{t}}}$$
$$I_{1} = J_{S}A_{E1}e^{\frac{V_{BE1}}{V_{t}}}$$

since $V_{BE1} = V_{BE2}$

$$I_1 \cong \left(\frac{A_{E1}}{A_{E0}}\right) I_0 = \left(\frac{A_{E1}}{A_{E0}}\right) \frac{V_{CC} - 0.6V}{R}$$

Note I_1 is not a function of V_1

Behaves as a current sink ! So is ideal with this model !!

And does not require an <u>additional</u> dc voltage source !!!

- Multiple Outputs Possible
- Can be built for sourcing or sinking currents
- Also useful as a current amplifier
- MOS counterparts work very well and are not plagued by base current

Two ways to look at this circuit:

- Q₀ and R bias Q₁
- R biases the $Q_0 : Q_1$ block

Multiple-Output Bipolar Current Sink

$$\mathbf{I}_{k} = \left[\frac{\mathbf{A}_{\mathsf{E}k}}{\mathbf{A}_{\mathsf{E}0}}\right] \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source

$$\mathbf{I}_{k} = \left[\frac{\mathbf{A}_{\mathsf{E}k}}{\mathbf{A}_{\mathsf{E}0}}\right] \mathbf{I}_{0}$$

Multiple-Output Bipolar Current Source and Sink

$$I_{nk} = ? \quad I_{pk} = ?$$

Multiple-Output Bipolar Current Source and Sink

$$\mathbf{I}_{nk} = \begin{bmatrix} \underline{A}_{Enk} \\ A_{E0} \end{bmatrix} \mathbf{I}_{0} \qquad \mathbf{I}_{pk} = \begin{bmatrix} \underline{A}_{En1} \\ A_{E0} \end{bmatrix} \begin{bmatrix} \underline{A}_{Epk} \\ A_{E0} \end{bmatrix} \mathbf{I}_{0}$$

This circuit is termed a "current mirror"

Will re-derive the transfer characteristics of the current mirror assuming $\rm I_B$ is small compared to $\rm I_C$

- Output current linearly dependent on I_{in}
- Small-signal and large-signal relationships the same since linear
- Serves as a current amplifier
- Widely used circuit

But I_{in} must be positive !

Amplifies both positive and negative currents (provided i_{IN}>-I_{BS})

Current amplifiers are easy to build !!

Current gain can be accurately controlled with appropriate layout !!

n-channel Current Mirror

- Current mirror gain <u>can</u> be accurately controlled !
- Layout is important to get accurate gain (for both MOS and BJT)

Stay Safe and Stay Healthy !

End of Lecture 33